

Forest Health Update

Developed for the Regional Forest Health Network November 23, 2018

Provincial Forest Health Program

Forest Health Staff:

- Field Coordinator
 - Dan Rowlinson
- NW Region
 - Kirstin Hicks
 - Hannah Keefe
 - Vance Boudreau
- NE Region
 - Lia Fricano
 - Cheryl Widdifield
 - Mike Francis
 - Chris McVeety
 - Ariel Ilic
- Southern Region
 - Vanessa Chaimbrone
 - Paulette Hebert
 - Susan McGowan
 - Rebecca Lidster

Presentation Overview

- Provincial update on 2018 major forest disturbances and monitoring data
- 2018 Projects
 - ✓ Beech leaf disease
 - ✓ Nitidulid Beetle Trapping
 - ✓ Walnut Twig Beetle Trapping
 - ✓ EAB Parasitoid Release
 - ✓ Asian Longhorned Beetle

Pest Information

Pest Origins: Pest Type: Host Species: Hardwoods Infestation Area: Native to North America Defoliator

1,006,013 ha (2018)

Forest tent caterpillar Moderate-to-severe defoliation in Ontario 1950 - 2018

emptville

gringston

NEW

YORK

Forest tent caterpillar 2018

Ontario Areas-within-which forest tent caterpillar caused defoliation

Light = 13,806 ha Moderate-to-severe = 992,207 ha

Forest tent caterpillar 2018

Southern Region Areas-within-which forest tent caterpillar caused defoliation

Light = 10,337 ha Moderate-to-severe = 473,337 ha

Area of light defoliation Area of moderate-to-severe defoliation

Forest Tent Caterpillar

Weather, parasites, predators, and pathogens:

- Weather; heavy frost in the spring; cooler spring temperatures or late spring frosts can also delay leaf development or damage host tree leaves
- Large flesh fly (Sarcophaga aldrichi) "friendly fly"
- Insect, birds, and small mammals
- NPV (nucleopolyhedrosis) virus

Spruce Budworm (Choristoneura fumiferana, Clemens)

Pest Information

Pest Origins:Native to North AmericaPest Type:DefoliatorHost Species:Balsam fir, white spruce, black spruce, red spruceInfestation Area:Defoliation-137,086 ha, Mortality-14 ha (2018)

Spruce budworm Moderate-to-severe defoliation in Ontario 1950 - 2018

Spruce Budworm (Choristoneura fumiferana, Clemens)

Spruce Budworm 2017

Ontario Areas-within-which spruce budworm caused defoliation

Light =158 ha Moderate-to-severe = 147,072 ha Mortality = 317 ha

Area of light defoliation Area of moderate-to-severe defoliation Area of mortality

Spruce Budworm

2

Spruce Budworm

Spruce budworm 2018

Southern Region Areas-within-which spruce budworm caused defoliation

Moderate-to-severe = 74 ha

Area of moderate-to-severe defoliation

Spruce Budworm Pheromone Trapping Results 2018

Highlights:

- Traps were deployed in 63 locations (NE–28 NW-18, S-17) in 2018. Highest numbers in Southern Region.
- NE Region had an average of 192 moths/trap. Blyth Twp, North Bay District had the highest 630 moths/trap.
- NW Region had an average of 11 moths/trap.
 Haycock Twp, Kenora District had the highest.
- Southern Region had an average of 222 moths/trap. Balsam Lk PP Peterborough District had the highest 607 moths/trap

Spruce Budworm Pheromone Trapping Program

Pest Information

Pest Origins:Native to North AmericaPest Type:DefoliatorHost Species:Jack pine, red pine, Scots pine, white pineInfestation Area:Moderate-to-severe defoliation – 627,455 ha (2018)Mortality- 870 ha (2018)

Jack pine budworm moderate-to-severe defoliation in Ontario 1950 - 2018

Moderate-to-severe defoliation (ha)

Jack Pine Budworm Pheromone Trapping Results 2018

Highlights:

- Traps deployed in 81 locations (NE-37, NW-35, S-9) in 2018. Highest numbers in Northwest Region.
- Northeast Region had an average of 23 moths/trap. High of 77 moths/trap in Nairn Twp in Sudbury District.
- Northwest Region had an average of 49 moth/trap. High of 133 moths/trap in Lac Seul area in Dryden District & Coyle Twp Kenora District.
- Southern Region had an average of 44 moths/trap. High of 76 moths/trap in Lake Travers in Algonquin Park.

Jack pine budworm Pheromone Trapping Results 2018

Average Number of Moths per Trap

- 0
- <10
- 10 25
- 25 50
- > 50

Jack Pine Budworm – Traps Locations in Southern Region

Large Aspen Tortrix

Pest Information

Pest Origins: Pest Type: Defoliator Host Species: Trembling aspen Infestation Area:

Native to North America 39,270 ha (2018)

Large Aspen Tortrix (Choristoneura conflictana Wlk.)

Large aspen tortrix 2018

Northeast Region Areas-within-which large aspen tortrix caused defoliation

Light = 64 ha Moderate-to-severe = 39,206 ha

Area of moderate-to-severe de foliation

Fall Cankerworm (Alsophila pometaria (Harr.)

Pest Information

Pest Origins:Native to North AmericaPest Type:DefoliatorHost Species:Manitoba maple, other maples, oak, ash and elmInfestation Area:831 ha (2018)

Science and Research Branch, Ministry of Natural Resources and Forestry

Fall Cankerworm (Alsophila pometaria (Harr.)

Fall Cankerworm

Gypsy Moth

Pest Information

Pest Origins:Invasive - Native to EuropePest Type:DefoliatorHost Species:Oak, birch, aspen and various hardwoodsInfestation Area:14, 937 ha (2018)

Gypsy moth Moderate-to-severe defoliation in Ontario 1980 - 2017

Gypsy Moth

Gypsy Moth

Cedar leafminers (various species)

Pest Information

Pest Origins:Native to North AmericaPest Type:DefoliatorHost Species:Eastern white cedarInfestation Area:5,919 ha (2018)

Science and Research Branch, Ministry of Natural Resources and Forestry

Cedar leafminer

Ontario

Kemptville

ngston

NEW

3 Bancroft

Catharines

Aurora

Cedar leafminer

Cedar leafminer

Cedar leafminer 2018

Southern Region Areas-within-which cedar leafminer caused defoliation

Moderate-to-severe = 26,082 ha

Area of moderate-to-severe defoliation

Larch Casebearer

Pest Information

Pest Origins:Invasive - NPest Type:DefoliatorHost Species:Larch (Tamarack)Infestation Area:1,986 ha (20)

Invasive - Native to Europe Defoliator ck) 1,986 ha (2018)

Ontario

Larch Casebearer

Larch casebearer 2018

Southern Region Areas-within-which larch casebearer caused defoliation

Moderate-to-severe = 1,986 ha

Area of moderate-to-severe defoliation

Eastern Larch Beetle

Pest Information

Pest Origins:Native to North AmericaPest Type:BorerHost Species:Larch (Tamarack)Infestation Area:1,125 ha (2018)

Eastern Larch Beetle

Eastern larch beetle 2018

Northwest region Areas-within-which eastern larch beetle caused damage

Moderate-to-severe = 1,125 ha

Area of moderate-to-severe damage

Ontario

Larch Decline

Balsam Fir Sawfly (Neodiprion abietis (Harr.))

Pest Information

Pest Origins: Pest Type: Host Species: Balsam fir Infestation Area: Native to North America Defoliator

31 ha (2018)

Balsam Fir Sawfly

Satin moth (Leucoma salicis (L.))

Pest Information

Pest Origins: Pest Type: Host Species: Poplar spp. Infestation Area: Invasive – Native to Europe and Asia Defoliator

61 ha (2018)

Satin moth (Leucoma salicis (L.))

Science and Research Branch, Ministry of Natural Resources and Forestry

ottawa

Toronto

NY

MN

IA

WI

Emerald Ash Borer

Pest Information

Pest Origins: Pest Type: Host Species: Ash spp. Infestation Area: Invasive – Native to Asia Wood Borer

4,580 ha (2018)

Emerald Ash Borer

Emerald ash borer 2004-2015 and 2016

Overview

Areas-within-which emerald ash borer caused decline and mortality to ash species.

237,595 ha (2004-2015 cumulative) 4,688 ha 2016

Area of moderate-tosevere decline and mortality 2004-2015

Area of moderate-tosevere decline and mortality 2016

Ontario

Emerald Ash Borer

Emerald Ash Borer

Emerald Ash Borer Traps & Ground Surveys 2017

- Trap positive
- Trap negative
- Ground Survey positive

Brown Spot Needle Blight (Lecanosticta acicola)

Pest Information

Pest Origins: Pest Type: Host Species: Scots pine Infestation Area: Native to North America Needle blight

1,827 ha (2018)

Brown spot needle blight (Lecanosticta acicola)

Blow down

Pest Information

Damage Type: Damage Area: Abiotic Damage – Weather Event 3, 839 ha (2018)

Blowdown

Blowdown

Tornado damage

Arlington Woods

Craig Henry Science and Research Branch, Ministry of Natural Resources and Forestry

Bruce Pit

Beech Bark Disease

Pest Information

Pest Origins: Pest Type: Host Species: Infestation Area: Invasive – Native to Europe - Halifax in the 1920s Insect – Disease Complex American Beech point locations in 2017

Beech Bark Disease

- Infested beech stands begin to shown signs of growth reduction, tree deformation, declines in wood quality and mast production, as well as premature mortality.
- Three distinct phases of beech bark disease development can be observed across Ontario:
 - Advancing front: beech scale populations have recently colonized unaffected beech trees. Scale infestations combined with other stressors can contribute to beech decline
 - Killing front: scale populations rapidly build and the fungus colonizes trees. The killing front is characterized by heavy levels of tree mortality
 - Aftermath forest: disease has passed through and remains endemic. Large remnant trees continue to decline and young trees become infected, disfigured, and gradually decline.

Beech Bark Disease

VC1

Beech Bark Disease and Beech Scale in Ontario 1999 - 2017

- Beech bark disease detected
- Beech scale detected

Produced by: Biodiversity and Monitoring Section Ministry of Natural Resources and Forestry

Sources : Base Data: MNRF LIO Projection: Transverse Mercator Datum: NAD 83

Published Feb. 2018 Copyright 2018 Queen's Printer of Ontario

Disclaimer: This map should not be relied on as a precise indicator of routes or locations, nor as a guide to navigation. The Ontario Minis ty of Natural Resources and Forestry shall not be liable in any way for the use of, or reliance upon, this map or any information on this map

Slide 61

VC1 what are grey dots, and light red dots ... Chaimbrone, Vanessa (MNRF), 7/18/2016

Other Minor Disturbances

Insects:

- Maple and basswood leafrollers
- Blackmine beetle
- Cynipidae gall wasps

Disease:

- Septoria leaf spot of birch and ash
- Anthracnose (elm)
- Botryosphaeria dothidea
- Tubakia leaf spot

Abitotic

• Winter drying

Galls caused by Callirhytis quercusoperator and Disholcaspis sp

Other Minor Disturbances

Damage by basswood leafrollers

Tubakia leaf spot on bur oak

Cedar Browning

Winter drying

Cedar leaf miner

Other stressors that contributed to browning of cedars:

- Fletcher scale
- Spider mites
- Herbicide spraying along highways
- Heavy seed crop

Presentation Overview

- Provincial update on 2018 major forest disturbances and monitoring data
- 2018 Projects
 - ✓ Beech Leaf Disease
 - ✓ EAB Parasitoid Release
 - ✓ Nitidulid Beetle Trapping
 - ✓ Walnut Twig Beetle Trapping
 - ✓ Asian Longhorned Beetle

Beech Leaf Disease

Characteristic symptoms:

Science and Research Branch, Ministry of Natural Resources and Forestry

Leaves with dark swollen

bands

Photo credit: Lake Co. OH Metroparks

Beech leaf detection in the US and Ontario

Beech leaf disease - the cause?

2012 testing in Ohio:

- No evidence of fungus, bacteria, virus, or phytoplasma
- Litylenchus nematode likely associated with BLD
- May 2018
- Detected beech leaf diseaseon/ nematode in Ontario BLD samples

June 2018

• Dr. Yu (Agriculture Canada) confirms *Litylenchus* nematode in BLD leaves

Beech leaf disease detections in Southwestern Ontario

Emerald Ash Borer – Parasitoid Release (CFS)

- Project Lead Dr. Krista Ryall, Canada Forest Service, Sault Ste. Marie
- 3 species of wasps being released in Ontario; larval and egg parasitoids
- Sites = ash plantations/ regenerating ash, mixed woodlots; high ash component and low to moderate EAB populations
- Most parasitoids provided by USDA-APHIS Biocontrol laboratory

<u>0.5 mm</u>

Figure 1. Tetrastichus planipennisi

Figure 2. Oobius agrili

Spathius galinae

Tetrastichus planipennisi Oobius agrili

EAB Parasitoid Release

20 release sites from 2013-2018, in both Ontario and Quebec

EAB Parasitoid Release

This is a **long-term project**, with a goal of establishing parasitoids to assist in regulating future EAB populations

 Releases of *T. planipennisi* have been highly successful, with established populations at each completed release site; supports US reports.

Next steps...

- Finish releases at new sites established in 2017
- Begin evaluating impact of parasitoids on EAB populations
- Expand and initiate new rearing programs
- Explore potential for urban releases of O. agrili

Oak Wilt, Ceratocystis fagacearum (Bretz) Hunt

Michigan State University

Oak Wilt - Symptoms

- Wilting of foliage in the top of crown first
- Loss of leaves early in the growing season fallen leaves appear brown, bronzed, or partially green
- Browning of leaves at leaf tip, progressing towards petiole
- Older pockets of oak wilt will exhibit dead trees at the centre, and declining trees scattered around perimeter
- Presence of fungal mats and bark cracks

http://www.gardenopoliscleveland.org/

Oak Wilt - Distribution in the US

http://foresthealth.fs.usda.gov/portal/Flex/APE

Oak Wilt - Means of Spread:

- 1. Root grafts & common root systems
- 2. Nitidulid beetles
- 3. Firewood

Michigan State University

Nitidulid Beetles – Trapping Program

Objective to determine:

1. Which species are most abundant in spring and which are most abundant in summer

- 2. Which combinations of lures attract the most species and the most beetles?
- 3. What types of trapping errors occur and how can they be corrected?

Walnut Twig Beetle Trapping Program

Objective:

Early detection of walnut twig beetle, the vector for Thousand Canker Disease

- Adopted CFIA protocol in 2012
- High risk locations (hardwood sawmills, walnut importers, urban green waste disposal sites), black walnut plantations, and natural forested areas containing black walnut

Thousand Canker Disease (TCD)

• Insect – disease complex

Insect vector = Walnut twig beetle (WTB) (*Pityophthorus juglandis*)

Fungus = Geosmithia morbida

- Only recently (2008) been identified as the causal agents in the decline and mortality of certain walnut, *Juglans* spp., with black walnut and butternut as primary hosts
- WTB beetle native to southwestern US
- Fungus from unknown origin

Walnut twig beetle

- Native to Arizona, California, New Mexico and northern Mexico
- Associated with Arizona walnut (*Juglans major*) where it is considered a secondary pest to host species
- WTB has expanded its range throughout western US and recently into eastern US
- Attacks the trunks and branches of black walnut trees; initially affects branches 5-10cm DBH
- Carries the fungus *Geosmithia morbida* causing TCD and eventual death of the tree

Walnut Twig Beetle Trap Locations

Asian Longhorned Beetle (ALHB) - Background

- Invasive native to China and other parts of Asia
- ALHB has been intercepted several times in imports to Canada
- 2 infestations have been found in Ontario:

1. 2003 near the border of Toronto and Vaughan; Declared eradicated in April 2013 after 5 years of surveying found no beetles or infested trees

 August 2013 in Mississauga/Toronto; infested trees were found in an industrial area near Pearson Airport; the infested trees and susceptible trees within
 800 m were removed in 2013 and 2014 to eradicate the infestation

Asian Longhorned Beetle – Signs and Symptoms

ALHB - Early Detection Efforts

Forest Health Conditions	5			
Every year, we monitor forested areas in	n Ontario for insect, disease, an	nd weather-rela	ated	
disturbances like wind or drought. Read	I summaries of the 2013 to 201	6 results belov	V.	
On this page				
1. Forest health monitoring				
2. Forest health conditions annual report summaries				
Forest health monitoring				
Collecting information on the health of our forests is im	portant because it helps to:			
 plan forest and pest management activities 				
 design research projects, invasive species strateg 	ties, and climate change programs			
 evaluate forest sustainability and biodiversity 				
Forest health monitoring includes:				
 mapping areas to document how much area is a 	ffected and how severe the damage is			
 collecting insect and disease samples to track wh to tree species affected 	ere they occur, how abundant they are, and	d any changes		
 surveying for specific forest pests, particularly in 	vasive species or pests that affect biodiversi	ity		
 conducting or supporting science projects related 	d to forest health			
) 📋 📴 🔍 👩 🔚 📜 🔀	PS International Contraction	SALE REAL	- B 6	LOI PM

https://www.ontario.ca/page/forest-health-conditions

Thank You!

vanessa.chaimbrone@ontario.ca paulette.hebert@ontario.ca